Electron Transport in a Dioxygenase-Ferredoxin Complex: Long Range Charge Coupling between the Rieske and Non-Heme Iron Center
نویسندگان
چکیده
Dioxygenase (dOx) utilizes stereospecific oxidation on aromatic molecules; consequently, dOx has potential applications in bioremediation and stereospecific oxidation synthesis. The reactive components of dOx comprise a Rieske structure Cys2[2Fe-2S]His2 and a non-heme reactive oxygen center (ROC). Between the Rieske structure and the ROC, a universally conserved Asp residue appears to bridge the two structures forming a Rieske-Asp-ROC triad, where the Asp is known to be essential for electron transfer processes. The Rieske and ROC share hydrogen bonds with Asp through their His ligands; suggesting an ideal network for electron transfer via the carboxyl side chain of Asp. Associated with the dOx is an itinerant charge carrying protein Ferredoxin (Fdx). Depending on the specific cognate, Fdx may also possess either the Rieske structure or a related structure known as 4-Cys-[2Fe-2S] (4-Cys). In this study, we extensively explore, at different levels of theory, the behavior of the individual components (Rieske and ROC) and their interaction together via the Asp using a variety of density function methods, basis sets, and a method known as Generalized Ionic Fragment Approach (GIFA) that permits setting up spin configurations manually. We also report results on the 4-Cys structure for comparison. The individual optimized structures are compared with observed spectroscopic data from the Rieske, 4-Cys and ROC structures (where information is available). The separate pieces are then combined together into a large Rieske-Asp-ROC (donor/bridge/acceptor) complex to estimate the overall coupling between individual components, based on changes to the partial charges. The results suggest that the partial charges are significantly altered when Asp bridges the Rieske and the ROC; hence, long range coupling through hydrogen bonding effects via the intercalated Asp bridge can drastically affect the partial charge distributions compared to the individual isolated structures. The results are consistent with a proton coupled electron transfer mechanism.
منابع مشابه
Rieske business: structure-function of Rieske non-heme oxygenases.
Rieske non-heme iron oxygenases (RO) catalyze stereo- and regiospecific reactions. Recently, an explosion of structural information on this class of enzymes has occurred in the literature. ROs are two/three component systems: a reductase component that obtains electrons from NAD(P)H, often a Rieske ferredoxin component that shuttles the electrons and an oxygenase component that performs catalys...
متن کاملStructures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system
Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2,3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing...
متن کاملGeometric and electronic structure/function correlations in non-heme iron enzymes.
ion step follows the decarboxylation, which is consistent with the deuterium isotopic effects observed for thymine 7-hydroxylase which indicate that an irreversible step (or steps) occurs prior to the C-H bond breaking.395 It has also been shown for prolyl 4-hydroxylase that a substrate-derived radical is generated in the reaction, which is consistent with a rebound mechanism.437 It is importan...
متن کاملComplete thermodynamic characterization of reduction and protonation of the bc(1)-type Rieske [2Fe-2S] center of Thermus thermophilus.
Rieske iron-sulfur (2Fe-2S) clusters play a central role in energy transduction by the quinone:cytochrome c oxidoreductases of the respiratory and photosynthetic chains (the bc1 and b6f complexes) and in the bacterial degradation of aromatic compounds.1 Distinguished from “ferredoxin-type” 2Fe-2S clusters by reduction potentials up to 700 mV higher, Rieske centers have one iron atom coordinated...
متن کاملPurification and characterization of carbazole 1,9a-dioxygenase, a three-component dioxygenase system of Pseudomonas resinovorans strain CA10.
The carbazole 1,9a-dioxygenase (CARDO) system of Pseudomonas resinovorans strain CA10 consists of terminal oxygenase (CarAa), ferredoxin (CarAc), and ferredoxin reductase (CarAd). Each component of CARDO was expressed in Escherichia coli strain BL21(DE3) as a native form (CarAa) or a His-tagged form (CarAc and CarAd) and was purified to apparent homogeneity. CarAa was found to be trimeric and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016